Involvement of Secondary Metabolites in Response to Drought Stress of Rice (Oryza sativa L.)

نویسندگان

  • Nguyen Thanh Quan
  • Hoang Anh
  • Tan Khang
  • Phung Thi Tuyen
  • Nguyen Phu Toan
  • Truong Ngoc Minh
  • Tuan Bach
  • Pham Thi Thu Ha
  • Tran Dang Khanh
  • Khuat Huu Trung
  • Tran Dang Xuan
چکیده

In this study, responses of rice under drought stress correlating with changes in chemical compositions were examined. Among 20 studied rice cultivars, Q8 was the most tolerant, whereas Q2 was the most susceptible to drought. Total phenols, total flavonoids, and antioxidant activities, and their accumulation in water deficit conditions were proportional to drought resistance levels of rice. In detail, total phenols and total flavonoids in Q8 (65.3 mg gallic acid equivalent (GAE) and 37.8 mg rutin equivalent (RE) were significantly higher than Q2 (33.9 mg GAE/g and 27.4 mg RE/g, respectively) in both control and drought stress groups. Similarly, the antioxidant activities including DPPH radical scavenging, β-carotene bleaching, and lipid peroxidation inhibition in Q8 were also higher than in Q2, and markedly increased in drought stress. In general, contents of individual phenolic acids in Q8 were higher than Q2, and they were significantly increased in drought stress to much greater extents than in Q2. However, p-hydroxybenzoic acid was found uniquely in Q8 cultivars. In addition, only vanillic acid was found in water deficit stress in both drought resistant and susceptible rice, suggesting that this phenolic acid, together with p-hydroxybenzoic acid, may play a key role in drought-tolerance mechanisms of rice. The use of vanillic acid and p-hyroxybenzoic acid, and their derivatives, may be useful to protect rice production against water shortage stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Rice (Oryza sativa L.) Drought Tolerance by Suppressing a NF-YA Transcription Factor

The response to drought stress is a complicated process involving stress sensing, intracellular signaltransduction, and the execution of a cellular response. Transcription factors play important roles in the signaling pathways including abiotic stress. In the present study a rice NF-YA transcription factor gene was partially characterized following dehydration. Disrupting the gene via a T...

متن کامل

Study of antioxidant defense genes expression profile pattern of rice (Oryza sativa L.) cultivars in response to drought stress

Drought stress is one of the important factors that restrict crop production in the world. This study was conducted to investigate defense gene expression in response to drought stress, and also to evaluate the drought tolerance and its mechanism in rice cultivars based on randomized complete block design in two separate environments (drought stress and non-stress). The rice cultivars used incl...

متن کامل

Evaluation of Tolerance to Drought Stress in Rice Genotypes (Oryza sativa L.) from Central and West Asian Countries

To identify genotypes tolerant to drought stress in rice germplasm, a factorial pot experiment was carried out in the form of a completely randomized design with three replications and 70 rice genotypes originating from Central and West Asian countries in non-stress and drought-stress conditions at the Rice Research Institute of Iran, Rasht, north of Iran, in 2019. Based on the results of this ...

متن کامل

Evaluation of drought tolerance in rice (Oryza sativa L.) cultivars and recombinant inbred lines

In order to study the adaptation of rice lines to drought stress and to identify the tolerant and sensitive lines, 150 pure lines in RIL population each derived from a cross between two Iranian rice varieties Gharib and Sepidroud were investigated. Augment design based on the randomized complete block design (RCBD) was used with 6 check cultivars and 4 replications in 2013-2014 growing season. ...

متن کامل

Estimation of genetic diversity in rice (Oryza sativa L.) genotypes using SSR markers under salinity stress . Fatemeh Gholizadeh1* and Saeed Navabpour2

In order to study the genetic diversity in rice (Oryza sativa L.), 29 genotypes consisting land races, pure and improved lines were evaluated using simple sequence repeat (SSR) markers. A total of 30 SSR primers were used to amplify some part of rice genome in germplasms, the PIC values ranged from 0.07 (RM 340) to 0.71 (RM 7426) with an average of 0.45. The results showed a total number of 106...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016